Arno DE CAIGNY

Arno DE CAIGNY
Associate Professor
Ph.D., Sales and Marketing, Marketing - University of Lille
Track: Marketing
LEM Member
Education
  • 2019 : Ph.D., Sales and Marketing, Marketing, University of Lille, France
  • 2015 : Master, Economics and Mathematics Sciences, Marketing, Ghent University, Belgium
  • 2014 : Master, Business Administration, Finance, Ghent University, Belgium
  • 2013 : Bachelor, Business Administration, Business, Ghent University, Belgium
Professional Experiences
Professional Experience :
  • 2015 - 2016, Business Analyst, Deloitte Touche Thomatsu, Brussels, Belgium
Published Papers in Refereed Journals
  • Guliyev E., Sanchez Ramirez J., De Caigny A., Coussement K., (2025). Improving B2B Customer Churn Through Action Rule Mining, Industrial Marketing Management, 125 (February) 1-11.
  • Beyer Diaz S., De Caigny A., Coussement K., (2025). From Collaborative Filtering to Deep Learning: Advancing Recommender Systems with Longitudinal Data in the Financial Services Industry, European Journal of Operational Research, forthcoming (2025) 1-10.
  • De Caigny A., Coussement K., Meire M., Hoornaert S., (2025). Investigating the Impact of Undersampling and Bagging: An Empirical Investigation for Customer Attrition Modeling, Annals of Operations Research, forthcoming (2025) 1-10.
Show all
  • De Bock K. W., Coussement K., De Caigny A., Slowinski R., Baesens B., Boute R., Choi T.-M., Delen D., Kraus M., Lessmann S., Maldonado S., Martens D., Oskarsdottir M., Vairetti C., Verbeke W., Weber R., (2024). Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda, European Journal of Operational Research, 317 (2) 249-272.
  • De Bock K. W., Coussement K., De Caigny A., (2024). Explainable Analytics in Operational Research, European Journal of Operational Research, 317 (2) 243-248.
  • Beyer Diaz S., Coussement K., De Caigny A., (2024). Improved Decision-Making Through Life Event Prediction: A Case Study in the Financial Services Industry, Decision Support Systems, 187 (December) 114342.
  • De Caigny A., De Bock K. W., Verboven S., (2024). Hybrid Black-Box Classification for Customer Churn Prediction with Segmented Interpretability Analysis, Decision Support Systems, 181 (2024) 114217.
  • Sanchez Ramirez Juliana, Coussement Kristof, De Caigny Arno, Benoit Dries F., Guliyev Emil, (2024). Incorporating Usage Data for B2B Churn Prediction Modeling, Industrial Marketing Management, 120 (July) 191-2025.
  • Idbenjra K., Coussement K., De Caigny A., (2024). Investigating the Beneficial Impact of Segmentation-based Modelling for Credit Scoring, Decision Support Systems, 179 (2024) 114170.
  • Borchert P., Coussement K., De Weerdt J., De Caigny A., (2024). Industry-sensitive Language Modeling for Business, European Journal of Operational Research, 315 (2) 691-702.
  • Mena G., Coussement K., De Bock K.W., De Caigny A., Lessmann S., (2024). Exploiting Time-Varying RFM Measures for Customer Churn Prediction with Deep Neural Networks, Annals of Operations Research, 339 (1) 765–787.
  • Beyer Diaz S., Coussement K., De Caigny A., Perez Armas L. F., Creemers S., (2024). Do the US President's Tweets Better Predict Oil Prices? An Empirical Examination Using Long Short-Term Memory Networks, International Journal of Production Research, 62 (6) 2158-2175.
  • Meire M., Coussement K., De Caigny A., Hoornaert S., (2022). Does it pay off to communicate like your online community? Evaluating the effect of content and linguistic style similarity on B2B brand engagement, Industrial Marketing Management, 106 (2022) 292-307.
  • De Caigny A., Coussement K., Verbeke W., Idbenjra K., Phan M., (2021). Uplift Modeling And Its Implications For B2B Customer Churn Prediction: A Segmentation-Based Modeling Approach, Industrial Marketing Management, 99 (2021) 28-39.
  • De Caigny A., De Bock K. W., (2021). Spline-Rule Ensemble Classifiers with Structured Sparsity Regularization for Interpretable Customer Churn Modeling, Decision Support Systems, 150 (113523) 1-14.
  • De Caigny A., Coussement K., De Bock K. W., (2020). Leveraging Fine-Grained Transaction Data for Customer Life Event Predictions, Decision Support Systems, 130 (March) 1-12.
  • Coussement K., Phan M., De Caigny A., Benoit D. F., Raes A., (2020). Predicting Student Dropout In Subscription-based Online Learning Environments: The Beneficial Impact Of The Logit Leaf Model, Decision Support Systems, 135 (August) 1-11.
  • De Caigny A., (2019). Innovation in customer scoring for the financial services industry, 4OR: A Quarterly Journal of Operations Research, 18 (1) 381–382.
  • De Caigny A., Coussement K., De Bock K., Lessmann S., (2019). Incorporating Textual Information in Customer Churn Prediction Models Based on a Convolutional Neural Network, International Journal of Forecasting, 36 (4) 1563-1578.
  • De Caigny A., Coussement K., De Bock K.W., (2018). A New Hybrid Classification Algorithm for Customer Churn Prediction Based on Logistic Regression and Decision Trees, European Journal of Operational Research, 269 (2) 760-772.
Research fields
  • Marketing Analytics
  • Economics
  • Quantitative Methods